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Abstract: In this paper, we present a space invariant topology to enable the Independent 
Component Analysis (ICA) to solve chemical detection from two unknown mixing chemical 
sources.  The four sets of unknown paired mixture sources are collected via JPL 16-ENose sensor 
array in the unknown environment with, at most, 12 samples data collected.  Per time invariant 
aspect, this appears to be an overcomplete case in ICA where the number of outputs (32) is larger 
than the number of inputs (16). 
Our space invariant topology along with the techniques of maximum entropy information by Bell 
and Sejnowski and natural gradient descent by Amari has demonstrated that it is effective to 
separate the two mixing unknown chemical sources with unknown mixing levels to the array of 
two original sources under insufficient sampled data.  From separated sources, they can be 
identified by projecting them on the 11 known chemical sources to find the best match for 
detection.   
In this paper, we present the results of our simulations. These simulations have shown that 100% 
correct detection could be achieved under the two cases: a) under-completed case where the 
number of input (mixtures) is larger than number of original chemical sources; and b) regular 
case where the number of input is the same as the number of sources while the time invariant 
topology approach may face the obstacles: overcomplete case, insufficient data and cumbersome 
topology. 
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I. Introduction 
 

The need for low-power, miniature sensor 
devices that can monitor air quality in an enclosed 
space with multi-compound capability and minimum 
human operation has led to the development of 
polymer-carbon composite based electronic nose 
(ENose) at NASA’s Jet Propulsion Laboratory (JPL) 
[1-3]. The sensor array in the JPL ENose consists of 
32 conductometric sensors made from insulating 
polymer films loaded with carbon. In its current 
design, it has the capability to detect 10 common 
contaminants which may be released into the 
recirculated breathing air of the space shuttle or space 
station from a spill or a leak; target concentrations are 
based on the 1-hour Spacecraft Maximum Allowable 
Concentrations (SMAC) set by NASA (see Table I) 

[4], and are in the parts-per-million (ppm) range. The 
ENose was intended to fill the gap between an alarm 
which has little or no ability to distinguish among 
chemical compounds causing a response and an 
analytical instrument which can distinguish all 
compounds present but with no real-time or 
continuous event monitoring ability. 

As in other array-based sensor devices, the 
individual sensor films of the ENose are not specific 
to any one analyte; it is in the use of an array of 
different sensor films that gases or gas mixtures can 
be uniquely identified by the pattern of measured 
response. The response pattern requires software 
analysis to deconvolute gas compounds and their 
concentrations. 

An example sensor set is shown in Figure 1a, 
and the complete device on which the data was used 
in this study is shown in Figure 1b.  

The specific analysis scenario considered for this 
development effort was one of leaks or spills of 
specific compounds. It has been shown in analysis of 
samples taken from space shuttle flights that, in 
general, air is kept clean by the air revitalization 
system and contaminants are present at levels 
significantly lower than the SMACs [5]; the JPL 
ENose has been developed to detect target 
compounds released suddenly into the breathing 
environment. A leak or a spill of a solvent or other 
compound would be an unusual event. Release of 
mixtures of more than two or three compounds would 



be still more unusual; such an event would require 
simultaneous leaks or spills to occur from separate 
sources. Thus, for this phase of development, 
mixtures of more than two target compounds were 
not considered. 

In this paper, we consider an approach to 
analysis of sensor responses to mixture so that use  of 
the JPL ENose may by extended to detection of 
chemical compounds in an open and changing 
environment, such as a building or a geographical 
area where air exchange is not controlled and limited.   

 
Table I   Target Gases and Concentrations 

 
Target 

Compound 
Concentrat-
ion Range 

Tested 
(ppm) 

1 hr. 
SMAC 
(ppm) 

Refer-
ence 

Num-
ber 

Benzene 10 – 50 30 1 
Ethanol 10 – 130 2000 2 
Freon 50 – 525 50 3 
Indole .006 – 0.06 1 4 
Methane 3000 – 7000 5300 5 
Methanol 10 – 300 30 6 
Propanol 75 – 180 400 7 
Toluene 30 – 60 16 8 
Ammonia 10 – 50 30 9 
Formaldhyde 50 – 510 0.4 10 
Medical 
Wipe 

500–4000 -- 13 

 
As such operation in the open environment, the 

collected sensory data will be a mixing between the 
unknown chemicals with the unknown mixing levels 
(coefficient) between them.  The identification of the 
chemical compounds among these mixing chemicals 
is a real challenge for real world applications. 

To search for a chemical compound whether it 
exits in the operating environment, one of the most 
robust techniques is to recover the original chemicals.  
When done, the detection can be an easy step by 
finding the minimum phase between the predicted 
original chemicals and the target chemicals.   More 
sophisticated way, the neural network approach [6-
10] can be employed to capture the target chemicals 
in various conditions through learning e.g., 
concentration levels through the parameterized 
weight set, then the strongest correlation between 
parameterized weight and the predicted original can 
be used to identify the intended chemical.  

Recently, Independent Component Analysis 
(ICA) has proven that it not only de-correlates the 
second order statistics of the signals but also reduces 
the higher order statistical dependencies.  ICA 
transforms an observed signal vector into a set of 
signals that are as statistically independent as 
possible. Theoretically, ICA is an information-
theoretic approach, which exploits concepts from 
information theory such as entropy and mutual 
information. 

The ICA roots in the early work of Herault and 
Jutten [11] who first introduced an adaptive 
algorithm in a simple feedback architecture that was 
able to separate several unknown independent 
sources.  ICA was further developed by [12-17]. 
Amari et al. [18] have used natural gradient descent 
based on the Riemannian metric tensor to optimize 
the curvature of a particular manifold in n 
dimensional space. This technique is employed to 
apply to the Infomax [16] to simplify the learning 
rule that is used in this paper. ICA has applications 
for feature extraction in speech recognition systems, 
in communication systems, in medical signal 
processing, and in image processing.  

 



II. Technical approach 
 
In this study, we based on the approximation of the 
set up topology shown in Figure 2 below: 

 
Figure 2: The system model and set up of 
the ENose array  

 
In Figure 2, the collected sensing data xi(t) consists of 
changes in electrical resistance corresponding to 
sensor response to the unknown mixture of chemical 
sources si and their densities (or concentrations) at 
the time t.  
 
Due to the small separation between the sensors 
themselves, the input of each sensor resistance is 
assumed to be uniquely distributed.  The sensory data 
can be modeled as follows: 
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Where fi is the unknown non linear activation, αj is 
the unknown mixing coefficient of chemical source j, 
and i is the index of sensor number and N as number 
of sensor and sj is original source. 
 
From equation (1), using the first order of a Taylor 
expansion, it is rewritten: 
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And so
j is an operating point of the source sj. 

For each sampling data point in time for the same 
sensor i, xi fluctuates around its operating point ai and 
it can be considered as a common bias for xi(t) with 

],[ tkttt ∆+∈ .  From this argument, Equation (2) 
can be simplified to: 
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Figure 1: a) a JPL ENose sensor substrate on the left with eight polymer-carbon composite sensors; 
b) the complete JPL ENose on the right. 

2.5 cm



 
Where Y is unbiased mixture data, Γ is the unknown 
mixing matrix and S is the chemical source signal.  
 
The learning rule based on the maximum entropy 
algorithm [11] is given by: 

)()( Wxgugy ==    (5) 
Where g is a non linear function e.g. the logistic 
function or hyperbolic tangent function. The update 
weight can be calculated as: 
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Where W-T is an inverse transport of the NXN weight 
matrix W, xT is a mixing input vector (observed 
vector), and 
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To simplify equation (5) using a natural gradient 
descent technique by Amari [13], the learning rule 
can be: 

WuuIW T ))(( Φ+=∆   (8) 
With Wxu =  
The details can be found in [14]. 
 

III. Space Invariant Architecture  
 
The most common ICA approach is that the number 
of variables and the number of sources are the same.  
However, in this study we face two obstacles: 1) 
there are 12 or less samples (mixing chemical 
compounds) from each sensor and the total number 
of sensor is 16 and they do not have sufficient data 
set (at least 16 data samples required); and 2) the 
number of variables is 16 as number of sensors while 
the number of compounds in a mixture is 2 and it is 
considered over complete case. 
 
For the time invariant approach, the data that will 
flow orthogonal (dotted arrow) with the time 
invariant direction as shown in Figure 3 will require 
32 outputs (16 channels for each chemical 
compound).  The topology is 16 inputs, 32 outputs 
and 12 or less sample data which may not be a 
solvable problem. 
Instead of using a time invariant approach, we use the 
space invariant approach (Figure 3 with dashed and 
dotted arrow)) which allows us to have more data 
points and enable the square mapping matrix (the 
dimension of mixing sources and sensors are the 
same).  This approach is feasible due to the 
mathematical model based on equations (2-4). 
The architectures are shown below: 

 

 
 
Figure 3: The space invariant ICA architecture (m=2-12) 
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1ŝ  

2ŝ
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In Figure 3, the unbiased input Yi(t) (i=1-k) is based 
on temporal mixture data and the sensory data are 
spatially invariant.   
 

From laboratory set up, we have collected a set of 
single spectra of 11 chemicals using 16 elements in 
the ENose sensor array; it is averaged and shown in 
Figure 4 below. 
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Figure 4: Classes of 11 chemical sources 
 
In this study, the number of sensors used is 16 and 
mixing chemical sources is 2; we will examine four 
sets of data, as shown in Table II below: 
 
Table II:  Parameters of chemical mixture  
 

Data 
set 

Number 
of 

variables 
(sensors)  

Mixture Number 
of 
samples 
available 

1 16 1 & 7 12 
2 16 3 & 10 9 
3 16 2 &13 8 
4 16 2 & 5 8 

 

IV. Simulation results  
 
Based on the data available provided in Table II, we 
divided this study into two experiments: 
1) Over complete case: in this case we used 

complete sample data (see column 4 in Table II)  
as input to the network and the output size is 2 as two 
original sources recovered. 
2) Squared case: this is a straight forward case with 

2 inputs and 2 outputs when the data was 
rearranged so that each input is from the same 
sensor with non-overlapped consecutive 
sampling times (t+ i*∆t and t+(i+1)*∆t). 
 

Experiment 1  
 



In this case, we have studied the four data sets in 
Table II and we used all data vectors available (The 
maximum number of data vectors is 12), which is 
less than the number of sensors (16).   
For data set 1, there are 12 mixtures of chemicals 1 
and 7 and the data are shown in Figure 5a.    
 
Data Set 1 
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Figure 5a: The mixture data of chemical 1  
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Figure 5b: Separated signal sources 1 and 7 
via space invariant ICA of 12 inputs  
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 Figure 5c: Original chemical sources 1 
and 7 by averaging technique 

                               
Using the space invariant ICA approach, the 
recovered signal sources (chemical 1 and 7 sources) 
are shown in Figure 5b and the average of the single 
chemical source 1 and 7 are shown in Figure 5c. 
Figures 5b and 5c, show a strong correlation between 
the chemical 1 and separated chemical named 1 
(green traces) and chemical 7 and separated signal 
named 7 (red). 
To confirm its performance, we projected the 
separated sources 1 and 7 by ICA technique on the 
known 11 chemical sources shown in Figure 4, the 
results are provided in Table III. 
 
Table III: The Projection of the separated chemical 
sources 1 and 7 on the original chemical 
 

Single 
chemical 
source 

Separated 
chemical 
1 

Separated 
chemical 
7 

1 0.8457 0.9601 
2 0.4772 0.6291 
3 0.7325 0.9369 
4 0.6286 0.5258 
5 0.7433 0.6996 
6 0.4872 0.4304 
7 0.7944 0.9876 
8 0.7938 0.9014 
9 0.6679 0.5737 

10 0.5271 0.6051 
13 0.6223 0.7896 

 
As can be inferred from Table III, the single source 
of chemical 1 has the greatest overlap with the 
separated source, labeled separated chemical 1.  
Similarly, single source chemical 7 has the greatest 
overlap with separated chemical 7 from the mixture 
shown in Figure 5a. 
 
Data Set 2 
Data set 2, a mixture of chemicals 3 and 10, is plotted 
in Figure 6a below. 
For the mixture from data set 2, the performance of 
space invariant ICA has demonstrated its effective 
capability to separate the mixture of chemicals 3 and 
10 as shown in Figures 6b as compared with the 
original sources in Figure 6c. 
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Figure 6a: Mixture data of chemicals 3 &10 
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Figure 6b: separated signal sources 3 and 10 
via space invariant ICA with 9 inputs and 2 
outputs 
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10 by averaging  technique. 

           
Table IV shows the correlation between the original 
and separated sources of chemical 3 and 10. 
 
Table IV: The Projection of the separated chemical 

sources 3 and 10 on the original chemical 
 
 
 

Single 
chemical 
source 

Separated 
chemical 3 

Separated 
chemical 

10 
 

1 0.8250 0.7723 
2 0.4760 0.8282 
3 0.9464 0.8254 
4 0.5235 0.4420 
5 0.6134 0.8935 
6 0.3414 0.7670 
7 0.8681 0.7829 
8 0.8165 0.8887 
9 0.6561 0.7803 

10 0.6125 0.9619 
13 0.7200 0.9444 

 
Data Set 3 
 
Data set 3, a mixture of chemicals 2 and 13, is plotted 
in Figure 7a. 
For the mixture of chemicals 2 and 13, space 
invariant ICA has demonstrated its capability to 
separate the mixture of chemical 2 and 13 as shown 
in Figure 7b as compared with the original sources in 
Figure 7c. 
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Figure 7a: Mixture data of chemical 2 &13 
 

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Separated C2 and C13 From Mixture Sources

Sensor #  



 Figure 7b: separated signal sources 2 and 13 
via space invariant ICA with 8 inputs and 2 
outputs. 
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13 by averaging technique 

                                    
In Table V it shows the correlation between the 
original and separated source of chemicals 2 and 13. 
 
Table V: The projection of the separated chemical 
sources on the original chemical 
 

Single 
chemical 
source 

Separated 
chemical 2 

Separated 
chemical 11 

1 0.6194 0.6916 
2 0.9893 0.9225 
3 0.5733 0.6970 
4 0.3166 0.3574 
5 0.7677 0.9007 
6 0.8016 0.8116 
7 0.7037 0.7350 
8 0.7643 0.8269 
9 0.5654 0.7117 

10 0.8331 0.9598 
13 0.9257 0.9709 

 
Data Set 4 
 
Data set 4, a mixture of chemicals 2 and 5, is plotted 
in Figure 8a 
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Figure 8a: Mixture data of chemicals 2 &5 

 
For mixture from data set 4 shown in Figure 8a, 
space invariant ICA has confirmed its powerful 
capability to separate the mixture of chemicals 2 and 
5 as shown in Figure 8b as compared with the 
original sources in Figure 8c. 
Table V shows the correlation between the 
original and separated source of chemical 2 and 
5. 
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Figure 8b: separated signal sources 2 and 5 
via space invariant ICA with 8 inputs and 2 
outputs. 

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C2 and C5 From Homogeneous Source (Average)

Sensor #  
Figure 8c: Original chemical sources 2 and 5 
by averaging technique 



                                               
 
Table VI: The Projection of the separated chemical 
sources 2 and 5 on the original chemicals 
 

Single 
chemical 
source 

Separated 
chemical 2 

Separated 
chemical 5 

1 0.7311 0.8138 
2 0.9017 0.7261 
3 0.6623 0.7240 
4 0.3824 0.5042 
5 0.8992 0.8639 
6 0.7301 0.6039 
7 0.7450 0.7974 
8 0.8098 0.8247 
9 0.6086 0.6377 

10 0.8753 0.7447 
13 0.8680 0.7566 

 
Experiment 2 
 
In this experiment, we paired data set 1 (16x12) in 
columns to obtain the data set 96x2.  From this 
conversion, data values in a single row are the data 
from the same sensor with consecutive sampling 
times (t+ i*∆t and t+(i+1)*∆t); this new data set 
allows the same number of mixing sources and of 
original sources.   
Using this new data set, space invariant ICA has 
produced the results that were validated with the 11 
known chemicals.  Classification was 100% correct, 
based on the projection on 11 classes shown in Figure 
4. 
To simplify the results, we tabulated the mean and 
standard deviation of its projection (separated sources 
C1 and C7) on each single chemical source and the 
results are summarized Table VII below: 
 
Table VII: The mean and standard deviation of its 
projection of separated sources C1 and C7 on each 
single chemical source 
 

Single 
chem-
ical 
source 

Mean 
Separat-

ed 
chemical 

7 

Stand-
ard 

devia-
tion 

Mean 
Separa-

ted 
chemical 

1 

Stand-
ard 

devia-
tion 

1 0.8851 0.0830 0.8959 0.0890 
2 0.5893 0.1405 0.5551 0.0792 
3 0.8728 0.0784 0.8046 0.0397 
4 0.4973 0.0723 0.5057 0.1541 
5 0.6611 0.0599 0.7285 0.0742 
6 0.4161 0.0970 0.4465 0.0903 
7 0.9222 0.0765 0.8664 0.1104 

8 0.8398 0.0604 0.8141 0.1099 
9 0.5539 0.0460 0.5601 0.1031 

10 0.5671 0.1103 0.5702 0.1141 
13 0.7342 0.1096 0.6902 0.1101 

 
Table VI is compact information to show that the 
separation sources from the mixture have 
successfully identified the original chemical sources. 
 
V. Discussions 
 
To separate two (2) mixing sources from a sixteen 
(16) element sensory data array, known as the over 
complete case, poses a challenges for mathematical 
model and network topology.  The non overlapped 
paire-wise (i.e. sensor i and sensor i+1) or overlapped 
pair-wise (i.e. (sensor i and sensor i+1) and (sensor 
i+1 and sensor i+2) so on)  may face cumbersome 
and ineffective techniques. 
As shown above, the mathematical model has 
demonstrated space invariant ICA to be an effective 
topology to overcome insufficient data samples and 
the over complete case.  Moreover, the chemical data 
itself is fuzzy and inconsistent, and the optimal 
topology is not answered in this study.  By simulation 
we have shown that chemical source separation 
problem can be solved effectively with complete time 
sampling data (k=12) (under complete case) and two 
consecutive sampling data (k=2).  Optimal topology 
may require a model of noise in order to determine 
the size of the sampling input.  Moreover, space 
invariant ICA governed by equation (4) is only valid 
when the sampling time is sufficiently small.  Hence, 
the sampling time also plays an important role to 
ensure that the model approach holds. 
 
VI. Conclusions 
 
We have provided a mathematical model to enable 
the space invariant ICA topology from which 
Informax and natural gradient descent technique can 
be applied and simulation has confirmed that our 
modeling is effective and sufficient to perform 
chemical source separation to enable the smart 
ENose. 

Further study will be conducted to validate its 
usefulness for the real world and open environment 
for chemical detection. In addition, the miniaturized, 
compact, light weight and low power hardware 
approach is also a driven force for NASA mission 
from which System-On-a-Chip approach will be our 
next focus based on this modeling approach.   
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